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Magnetostatic Surface-Wave Propagation in
Ferrite Thin Films with Arbitrary Variations
of the Magnetization Through the Film
Thickness

NIKOLAOS E. BURIS, STUDENT MEMBER, IEEE, AND DANIEL D. STANCIL., MEMBER, IEEE

Abstract — A variational formulation for the magnetostatic problem in an
anisotropic and inhomogeneous region bounded by perfect conductors is
described. The method is applied to the special case of magnetostatic
surface-wave (MSSW) modes propagating in a ferrite thin film with
arbitrary variations of the saturation magnetization through the film thick-
ness. Methods for calculating dispersion relations, delay characteristics,
and magnetostatic potential functions are discussed. The functional that is
minimized is interpreted in terms of contributions to the mode energy.
Also, concepts pertaining to homogeneous films such as mode bandwidth
and dimensional scaling effects are extended to the general inhomogeneous
case. Calculations for a two-layer film with a gradual transition region and
an ion-implanted film are presented as numerical examples.

I. INTRODUCTION

AGNETOSTATIC WAVES propagating in a ferrite

slab or thin-film magnetized in-plane were first
described by Damon and Eshbach [1]. These waves may
lead to a new class of microwave devices such as tunable
delay lines, filters, and resonators [2].

An undesirable characteristic for many applications,
however, is the highly dispersive nature of the waves.
Experimentally, as well as theoretically, it has been shown
that the delay of magnetostatic waves can be controlled by
using multilayer ferrite-dielectric structures above a ground
plane [3]-[17]. Evidence also exists that inhomogeneities in
the magnetization and/or the bias field can be used to
control the dispersion as well as guide and localize the
magnetostatic mode energy [18]--[26].

Multilayer structures can be viewed as special cases of
an arbitrary thickness variation of the magnetization M.
Thickness variations in M, have also been induced by ion
implantation [27], [28], and occur naturally in ferrite thin
films at the transition layer between the ferrite and the
nonmagnetic substrate [29].

The problem of arbitrary inhomogeneities cannot be
easily attacked by classical boundary value techniques.
Consequently, methods based upon variational principles
have been introduced for analyzing nonuniform geometries
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[23], [30], [31]. Here we describe a technique for analyzing
magnetostatic surface waves (MSSW’s) propagating in a
thin film with arbitrary variations in the magnetization
through the film thickness. The technique is based on a
variational principle [30] and a slight modification of Ritz’
method. We expand the potential in the ferrimagnetic
region in a complete set of functions, and then, using the
variational principle, reduce the problem to an infinite
linear system in the coefficients of the expansion. In princi-
ple, the solution can be obtained to any degree of accuracy
by increasing the number of terms kept in the potential
expansion. As numerical examples, results for a two-layer
film with a gradual transition region and an ion-implanted
film are presented.

II. EQUIVALENCE OF VARIATIONAL AND BOUNDARY
VALUE METHODS

Consider a region V of space, bounded by the closed
surface S. Suppose that a potential field ¢ (7) exists in this
region and satisfies the equation

v-(gvy)=0 Y]
with

(2a)
(2b)

- (B-Vi )5, =0
Y(7)ls, = 8,(7)

and S;+ S, =S. Here j is the permeability tensor and g,
is a given function on S,. The permeability tensor §i is a
function of position, in general. Equations (2a) and (2b)
form a set of mixed boundary conditions that guarantee
the uniqueness of the field solution.

Given the potential function ¢ satisfying (1) and (2), the
magnetostatic vector fields can be obtained from

h=-vy (3)

b=p-h. (4)

Equation (1) is an ordinary differential equation of the
second degree which, as is well known, can always be the
Euler-Lagrange equation of an appropriate variational

problem [32]. Appendix A shows that the above magneto-
static problem is equivalent to requiring the first variation
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of the following functional to vanish:

W= | LdV 5
/; (5)
where
ay
xpk=:?—;c-, k=1,2,3. (7)

The * indicates the complex conjugate, and summation
over repeated indices is implied unless otherwise stated.
Further, integration by parts shows the stationary value of
W to be zero (Appendix B).

III. APPLICATION TO MAGNETOSTATIC SURFACE
WAVES

An effective method for solving variational problems is
that of Ritz, where an expansion of the unknown field in
complete, orthogonal functions is substituted into the func-
tional to be extremized. This gives a system of equations in
the coefficients of the expansion. Solving for these coeffi-
cients then determines the field.

Here we apply the above method to the propagation of
magnetostatic surface waves in infinite ferrimagnetic slabs
between ground planes. Let us assume a ferrimagnetic slab
of thickness 25 placed between parallel infinite perfect
conductors as in Fig. 1. Consider a coordinate system with
origin at the middle of the slab with the z-axis parallel to
the slab and the conductors. Due to the symmetry of the
problem, the analysis becomes two-dimensional. We also
assume a bias field H= H,? and a small-signal time
dependence of the form exp(—iwt). The permeability
tensor of the ferromagnetic material takes the form

1+x —ikx O
p=po| ix 1+x O (8)
0 0 1

where

_ wglwg+ @,,)— @

1+ 9
X R ©)
w, W
K=" 10
s (10)

wo = — YpoHy @,, = — YhoM,(x), v is the gyromagnetic
ratio (negative), and M (x) is the saturation magnetization
of the slab as a function of position.

Substituting (8) into (1) gives the general form of Walker’s
equation in the ferrite [19]

a+x) y, Y _,

1+x) 2ty a1
Ix? ox  Ix  gy?

In the dielectric, (11) reduces to Laplace’s equation.
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Fig. 1. Ferrite film geometry and coordinate system used.

We are interested in potentials that describe waves prop-
agating along the y-axis. These potentials can be written as

Y= {Ale_B"+ Azeﬁx}ei”ﬁ-y (12a)
Y= Cnfn(x)ewﬁy (12b)
Y= { Dy P+ DyeP~ }ePr (12¢)

where » = £1 is a directional parameter, 8 is restricted to
positive values, and the functions f;(x) form a complete set
in the interval [—s, s]. Using (12) and the fact that the
fields vanish in the region outside of the two ground
planes, the functional (5) becomes

w= !"of_s[132|D1e_px — DyeP*|?
-t
+»28%|De” P + DyeP|?] dx
5
+hof {[(1+x)C, 1+ 0B f]C.7

+ (kG +vB(1+X) C, f, | 9BC.f,} dx

d —pXx X
+ o [ B AP — Ay
A

+ 282\ Ay P* + A,eP*?] dx

(13)

where w represents W per unit area since, in our case, L is
a function of x only.

To apply the variational principle to the functional, we
need to have a continuous ¢ in (6); as for the boundary
conditions (2), the problem can be described by homoge-
neous Neumann conditions on the ground planes. Continu-
ous ¢ implies

Ae B+ A6 =C,f,(s)
D,efs+ Dy Bs=C,f,(—s).

(14a)
(14b)

Requiring the normal b field to vanish at the ground
planes gives

Aje™Pi— 4ePi=0
D.eP'— D,e ' =0.

(15a)
(15b)
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Using the boundary conditions (14)—(15), we can eliminate
Ay, A,, D;, and D, from (13) which, after performing the
integrals over the dielectric regions, becomes

w =1U‘OIBCIC}[th(18t2)./;f;|—x + th(ﬁtl)fzjgls]
+pCG [ [+ 0 {15+ B711)

+woB{ /1, + 11 }] dx. (16)

In the first section, we stated that, for the correct potential
¢, the functional (16) has a vanishing first variation. Neces-
sary conditions for this are

9w _,

7

ac, (17)

for all k. Applying (17) to (16), we get the following
infinite linear system in the expansion coefficients C;:

2pa,:C, =0 (182)
for all k, where

Ay, = B[th(BIZ)flfk]——s + th(Btl)fszIs]

+ [ 1S+ B f) +ooB(fifi+ 1.50)] .
- (18b)

The system (18a) has the trivial solution unless
det(a,,)=0. (19)

Our method consists of varying beta in such a way that
(19) is satisfied. This process is repeated for different
frequencies to obtain the dispersion relation 8 = 8(w).

Having found the wavenumber B, the equations (18a)
are solved for the expansion coefficients C,. Finally, the
boundary conditions (14)—(15) can be used to determine
the constants A,, 4,, D;, and D, in terms of the C’s,
completing the solution for the potential (12). The group
delay can be calculated by a numerical derivative of the
dispersion relation.

IV. COMPARISON WITH RITZ’ METHOD

Normal application of Ritz’ method would assume a
potential of the form

Y(x, ) =@o(x)e™” (20a)
with

po(x) = b, F;(x) (20b)
for the entire region of x between the two ground planes.
An analogous procedure for the calculation of w would

give
w=nobib, [* (1+x)[(F1F/+ B°FF)

+kvB(F/F + FF’)] dax (21)

where now the set {---,F/(x),---} is complete in the
interval [— ¢, d], and x and « vanish in the dielectric gaps.
Such an analysis would require many more terms than
(12b) since the series would be called upon to describe the
discontinuities in the slope of the potential at the film
edges.

On the other hand, our method combines three electro-
magnetic problems, two of which (in the dielectric regions)
have known analytic general solutions. The boundary con-
ditions on the continuity of the field (14)-(15) together
with the fact that mixed boundary conditions uniquely
determine the solution to Laplace’s equation [33], guaran-
tee that the three fields in (12) exist simultaneously. Thus,
our method can be viewed as a judicious combination of
both the boundary value technique and Ritz’ method.

A quantitative demonstration of the above comparison
can be done for the case of an isolated film (z,,¢, = o0)
where the wavenumber can be calculated exactly. We have
used Legendre polynomials for reasons to be explained in
Section VII. We studied the wavenumber of a 30-pm
homogeneous film of M, =140 kA /m using two sets of
functions. In the first case, the functions f;, were Legendre
polynomials orthogonal in the region —15 pm to +15 pm
(the entire film thickness). Using only two terms in (12b),
B was found with an error of 0.0136 percent at 2.96 GHz.
By using three terms, the error in 8 was reduced to 0.0012
percent. In the second case, the functions f;, were Legendre
polynomials orthogonal in the region —15 pm to +25 um;
that is, the orthogonality region was extended by 33 per-
cent beyond the film thickness at one side. This required
the series to reproduce the discontinuity in the slope of the
potential at the film edge, as discussed above. In this case,
the use of twenty terms in (12b) resulted in an error in 8 of
3.2 percent at 2.96 GHz.

V. INTERPRETATION OF THE FUNCTIONAL

Using the constitutive relation b= py(k + ) and the
linearized Landau-Lifshitz equation of motion, the effec-
tive Lagrangian density L can be expressed [34], [35]

T 7 Yo 7.2 l-"oHo_z Mo w o,
L=b-h*=4| 507124 80 052 ;100 & 4, *
b-h*=4 4|h| 7 !"slml i 3-(mxm*)|.

4 w,

(22)
The first two terms in (22) represent the small-signal
magnetostatic and Zeeman energy densities, respectively.
The last term is always real and can be interpreted as a
small-signal pseudo-kinetic energy density associated with
the precession of the magnetization [36]. (Morgenthaler has
also interpreted this quantity in terms of a quasi-particle
number density [34].) Thus, the Lagrangian density con-
sists of the difference between the potential and pseudo-
kinetic energy densities of the mode. Since W= [b-h* dV’
=0, we conclude that the net potential and pseudo-kinetic
energies of the mode are equal.

The total magnetic energy density in a dispersive medium
is [37]

_l—*_ a(wﬁ) 7
um—4h P h
_l—.—* L7« a_ﬁ A
—4b h + 4k 20 - (23)
Using (8), the last term in (23) can be expressed
W= O - iy @,
Zh*'b*(;'h=70w—mz'(mxm*). (24)
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The first and second terms in (23) are sometimes called the
pseudo-energy density [38] and the dispersion energy den-
sity [39], respectively. In plasmas and ionic crystals, the
electric dispersion energy density is associated with the
kinetic energy of the ions or charge carriers [39]. Similarly,
(24) identifies the dispersion energy density with the
pseudo-kinetic energy density associated with the magnetic
precession.

However, the precession of the magnetization is a gyro-
scopic motion that cannot contribute to the total energy of
the system (hence our choice of the term pseudo-kinetic).
Combining (22)—(24) gives

- H
= IR+ G (25)
verifying that the gyroscopic terms do not contribute to the
total mode energy density. (Here we have omitted the
crystalline anisotropy energy density for simplicity.)

Fishman and Morgenthaler [35] have shown that the
integral of the last term in (22) over the ferrite will give the
total mode energy. In the present context, this follows
immediately from W= 0 and the equality of potential and
pseudo-kinetic energies.

VI. GENERAL PROPERTIES

The frequency range for magnetostatic surface waves in
an homogeneous magnetization is given by [1]

W, S0 Wy (26a)
where
w0y = [wo(wo+ w,)] " (26b)
and
= wy + w0, /2. (26¢)

In this region, (1+ x) is always positive.

With the variational technique, we are able to investigate
the general case where M, = M (x). Thus, (9) shows that
(1+ x) is a function of both x and «. We consider the
quantity

9°L
dg'dg’

(27)

with ¢’ = dp/dx and @(x)=c,f,(x). For surface waves

d°’L
dp'dg’

(28)

=1+x.

For a uniform magnetization, (9) shows that 1+ x is
positive for all w > w,. (In the dielectric regions, 1+ x is
clearly positive since x vanishes.) The condition

d’L
do'dy’

>0 (29)

first investigated by A. M. Legendre [40], together with the
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vanishing of the first variation of w in (5), shows that w
possesses a minimum for the correct field.

For nonuniform rhagnetization, we define the frequency
(cf. (26b))

0§

@OLmax = (wO(wO +max @y )1/2

(30)
where max w,, is the value of w,, corresponding to the
maximum of M(x). Thus, 1+ x is positive definite for
frequencies above w; ... We have always found a
surface-wave mode having a low cutoff frequency of w; .-
This is a confirmation and generalization of the result
reported by Adkins and Glass [12]. For frequencies below
W7 max the sign of the quadratic form (27) depends on the
position. Although we have found modes in this frequency
range, we have not been able to obtain satisfactory conver-
gence. Consequently, these modes are not discussed in the
present paper. This is the condition for which virtual
surface modes may exist [20] and needs more investigation.

It is well known that the quantity Bs is invariant under a
change in film thickness for uniform films without a ground
plane. It can be shown (Appendix C) that this result is also
valid for inhomogeneous films with ground planes, if x
and k transform as scalars under the point transformation

(31)

That is, if B is the wavenumber of the MSSW of an
expanded (e >1) or contracted (e <1) film geometry, then

B(w) =eB(w).

Taking the derivative of (32) with respect to w gives the
corresponding result for the group delay

(w)=ef(w) (33)

where % is the delay of the MSSW in the transformed
geometry. As discussed in Appendix C, the mode pass-
bands of the two geometries are identical.

X =ex, e>0.

(32)

VII. NUMERICAL EXAMPLES
Legendre Polynomials defined in the interval [— s, s]
have been chosen for the basis functions { - --,f,(x),--- }

in our analysis. These functions are convenient because of
their orthogonality in the interval [— s, 5] and the fact that
a good approximation to the potential function of an
isolated, uniform film can be obtained using only f, and f;
(see also Section IV). A computer program has been writ-
ten to calculate the matrix (18b) and its determinant. The
dispersion relation, the potential, and the delay characteris-
tics of the waves are obtained as described in Section III.

As an example, consider the two-layer film with a grad-
val transition region shown in Fig. 2. The potentials for
waves traveling in both the positive (» = + 1) and negative
(v =—1) y directions are also shown. The corresponding
delays are plotted in Fig. 3. The maximum value of M, is
143 kA/m (1797 G) while the minimum is 110 kA /m
(1383 G) occurring at x=+s and x = — s, respectively.
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Fig. 2. The MSSW potential for the two directions of propagation in a
film with a nonuniform magnetization profile. The principle value of
the inverse tangent function was used to describe the thickness varia-
tion of M,. The parameters are f=2.9 GHz, H, =31.8 kA/m (400
Oe), 25 =30 pm, t; > 0, and ¢, = 635 pm.
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Fig. 3. The delay characteristics of the film shown in Fig. 2. The vertical
dashed line indicates the frequency used for the potential profile shown
(2.9 GHz).

The MSSW passband for a film of M, =143 kA/m in a
bias field H, = 31.8 kA /m (400 Oe) extends from f; = 2.62
to fi = 3.63 GHz as given by (26b,c) with |y| =28 GHz/T.
The film shown has several other modes for frequencies
below f;. The delays shown correspond to the mode associ-
ated with the maximum value of M.

As is well known, the distribution of the MSSW energy
depends on the direction of propagation, determined here
by ». The delay peak at f=2.67 GHz in Fig. 2 for v = —1
is a result of the ground plane. For » = +1, this effect is no
longer apparent because the energy is mostly localized at
the right side of the film, far from the ground plane.
Instead, the delay turns smoothly upwards near the bottom
of the band. We have observed this behavior whenever the
maximum value of M, occurs at the side of the film where
most of the energy is concentrated. For the modes shown,
the delay near the low-frequency band edge depends pri-
marily on the maximum value of the magnetization. On the
other hand, the greatest effect of the ground plane occurs
at frequencies that depend on its distance from the film.
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Fig. 4. The MSSW potential for the two directions of propagation in an
ion-implanted film at f =3 GHz. Additional parameters are H, = 31.8
kA /m (400 Oe), 25 =6 pm, 1; - o0, and ¢, = 635 pm.
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Fig. 5. The delay characteristics of the ion-implanted film shown in
Fig. 4. The vertical dashed line indicates the frequency used for the
potential profile shown (3 GHz).

A magnetization profile representative of an ion-
implanted film [41] is shown in Fig. 4 along with the
resulting magnetostatic potentials for both directions of
propagation. The corresponding delay characteristics are
shown in Fig. 5. The dashed line indicates the frequency
used for the calculations of Fig. 4. Here the film thickness
is very small in comparison with the ground-plane dis-
tance. As a result, the effect of the ground plane is negligi-
ble.

In both examples presented above, ten terms were used
in the expansion (12b). The absolute error in the wavenum-
ber cannot be calculated as in Section IV since the exact
solution is not available. Instead, the convergence of the
wavenumber is tested by a modified Cauchy criterion. If 8,
is the wavenumber found by (19) using # terms in the
expansion (12b), then convergence is obtained by requiring
the ‘quantity {,=|8,.1— B,//8, to be sufficiently small.
Numerically, this quantity is found to be frequency depen-
dent and largest at the low-frequency band edge. For the
calculations of Fig. 3, {;, <1073 for f>2.65 GHz; for
Fig. 5, {0 < 0.00135 for f > 2.64 GHz.

Previously, the analysis of ion-implanted films was
limited to step profiles approximated by multiple implanta-
tion [27], [28]. In contrast, any profile realizable by multi-
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ple or single ion-implantation processes can be readily
analyzed with the present method.

VIIL

Magnetization inhomogeneities in ferrite film geometries
have been used to control dispersion, form array reflectors,
and occur naturally at the film-substrate interface. We
have presented a method for analyzing magnetostatic
surface-wave modes in thin films with arbitrary variations
of M, through the thickness. Our discussion has been
limited to the lowest order modes of the system.

CONCLUSIONS

APPENDIX A
EQUIVALENCE OF VARIATIONAL FORMULATION

The equivalence of the variational approach can be
demonstrated by taking the variation of W with respect to
the potential and its derivatives

oW = f SLAV
| 4

W= f[a¢k3¢k oot a¢k]dV (A1)

Using integration by parts, (Al) can be rewritten as

W = ¢ Gy oy do.t ¢ —64/* do,

Ll S5l oo

where do, =n,ds and n, is the kth component of an
outward directed unit vector normal to the surface element
ds. Viewed as a variational problem §W = 0, (A2) is associ-
ated with the following field equations:

E%Z(Hki%)* =0 (A3a)
9 ,
W(P«ki‘l’,) =0 (A3b)
and the boundary condition integral
i[(“ki%)*&‘l’*(ﬂkﬂh)&l/*] do,=0. (A4)

Here we have made use of the fact that fi is Hermitian for
a lossless medium (cf. (8)). For Dirichlet boundary condi-
tions (2b), 8¢ is chosen to vanish on S, thus satisfying the
condition (A4). For homogeneous Neumann boundary
conditions, (A4) is required to vanish for all 8¢ and 8¢*,
resulting in (2a). Finally, comparison of (1) and (A3) shows
the complete equivalence of the boundary value and the
variational approach to the magnetostatic field problem.
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APPENDIX B

STATIONARY VALUE OF W

The functional W can be written

W=-— fB-w* dv. (B1)
Vv
Integration by parts gives

W= —¢¢*B-ﬁds+f¢*v-5dy. (B2)

S v

The first term vanishes because of the boundary condition
b-7=0 on S, and the Maxwell equation v-b =0 causes
the last term to vanish, yielding the desired result W= 0.

APPENDIX C
INVARIANCE OF Bs UNDER CHANGES OF SCALE

The dispersion relation (19) obviously does not change if
we replace a,, in (18b) by

Atk =auS.

(C1)

- This gives

A,k=B[th(Bts—z)f,fk],s+th(le)f,fkh]
s Q) ffide+ B f(1+x)ffkdx

+qu (f/f+ f,11) dx (2)

where
B=fs. (C3)

Now consider a geometry related to that of Fig. 1 by a
change of scale described by the transformation

e>0. (Ca)

X =ex,

Applying this transformation to (C2) gives
A~lk=‘§|:th( )ffklx—-ss+th( )ff 5: s]
+esf (1+X)8x 8x
+I32lf€s A+ %)f.f. dx
s X) il ax

— €5
€5
+ VBf

— €S

( U, )

é'fk)
Here quantities in the transformed system are indicated by
a tilde. We can always choose the basis functions f, such
that

fi(®)= 1) (ce)
which implies (cf. (C4))
TRE =1, ()
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Substituting (C6) and (C7) into (C5) gives

A= Bl B2) 100+ (B2 11
+sf 1+ x(ex)] 7 ax
+32%fjs[l+)~((ex)]fifkdx

+vB [ kex)(fifi + 1) dx (c8)

where we have used 7, =et;, and 7, =€z, according to
(C4). If the inhomogeneity profile is also scaled such that

x(%)=x(ex)=x(x) (C9a)
#(x)=#k(ex)=x(x) (C9b)
then comparison of (C2) and (C8) clearly yields
4,(B) = A, (B) (C10)
which, by (19), implies
B(w)=B(w) (C11)
or, by (C3)
B(w)s=p(w)es. (C12)

The above derivation is valid for negative € as well. In
this case, (C12) shows that a change in the direction of
propagation is also required to preserve the invariance.

In general, the dispersion relation (19) represents several
modes with their associated frequency passbands. Equation
(C12) shows that corresponding modes given by 8 and §
have exactly the same frequency passbands, since multipli-
cation by the factor ¢ does not change the pole or zero
locations of a function.
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